+

 

CNRT Overview Video References

 

 

CNRT Overview Video References

 

Reviews

  1. Raskin P, Cincotta AH. Bromocriptine-QR therapy for the management of type 2 diabetes mellitus: developmental basis and therapeutic profile summary. Expert Review of Endocrinology & Metabolism 2016;11(2):113-48.
  2. Meier AH, Cincotta AH. Circadian rhythms regulate the expression of the thrifty genotype/phenotype. Diabetes Reviews. 1996;4(4):464-87.
  3. Cincotta A. Hypothalamic role in Insulin Resistance and insulin Resistance Syndrome. Frontiers in Animal Diabetes Research Series. Taylor and Francis, Eds Hansen, B Shafrir, E London, pp 271-312, 2002

 

Seasonal Changes in Metabolism in Humans

  1. Seasonal variations of severe hypoglycemia in patients with type 1 diabetes mellitus, type 2 diabetes mellitus, and non-diabetes mellitus: clinical analysis of 578 hypoglycemia cases. Tsujimoto T et al. Medicine (Baltimore) 2014;93:e148
  2. Seasonal variation of HbA1c in intensive treatment of children with type 1 diabetes. Nordfeldt S et al. J Pediatr Endocrinol Metab 2000;13:529-35.
  3. Seasonal fluctuations of glycated hemoglobin levels in Japanese diabetic patients. Sakura H et al. Diabetes Res Clin Pract 2010;88:65-70
  4. Seasonal changes in preprandial glucose, A1C, and blood pressure in diabetic patients. Liang WW. Diabetes Care 2007;30:2501-2
  5. Seasonal variation of glycemic control in type 2 diabetic patients. Ishii H et al. Diabetes Care 2001;24:1503
  6. Seasonal changes in body composition and blood HbA1c levels without weight change in male patients with type 2 diabetes treated with insulin. Sohmiya M et al. Diabetes Care 2004;27:1238-9
  7. Seasonal variation in fasting glucose and HbA1c in patients with type 2 diabetes. Gikas A et al. Prim Care Diabetes. 2009;3:111-4
  8. During winter the body resists insulin. Partonen T. Hypertens Res 2013;36:390-1
  9. Association of seasonal variation in the prevalence of metabolic syndrome with insulin resistance.
  10. Kamezaki F et al. Hypertens Res 2013;36:398-402
  11. Seasonal variation in metabolic syndrome prevalence. Kamezaki F et al. Hypertens Res 2010;33:568-72
  12. Seasonal changes in mood and behavior are linked to metabolic syndrome. Rintamäki R et al. PLoS One. 2008;3(1):e1482.

 

Low Brain Dopaminergic Activity is Associated with Insulin Resistance in Humans

  1. Brain dopamine and obesity. Wang GJ, et al. Lancet. 2001;357(9253):354-7.
  2. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. Wang GJ, et al. J Addict Dis. 2004;23(3):39-53.
  3. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary. Blum K, et al. Theor Biol Med Model. 2008 Nov 12;5:24.
  4. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Stice E, et al. Science. 2008;322(5900):449-52.
  5. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Volkow ND, et al. Neuroimage. 2008;42(4):1537-43.
  6. D2 dopamine receptor Taq1A polymorphism, body weight, and dietary intake in type 2 diabetes. Barnard ND, et al. Nutrition. 2009;25(1):58-65.
  7. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Dunn JP, et al. Diabetes Care. 2012;35:1105–1111.
  8. Reduced insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral striatum of healthy non-obese humans. Caravaggio F, et al. Int J Neuropsychopharmacol. 2015;18(7):pyv014.
  9. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Ter Horst KW, et al. Sci Transl Med. 2018;10(442)pii:eaar3752.

 

Hypofunction of Human D2 Receptor Associates with Insulin Resistance

  1. Brain dopamine and obesity. Wang GJ et al. Lancet. 2001;357(9253):354-7.
  2. Comparative effects of the antipsychotics sulpiride or risperidone in rats: bodyweight, food intake, body composition, hormones and glucose tolerance. Baptista T et al. Brain Res. 2002;957(1):144-51.
  3. Assessment of independent effect of olanzapine and risperidone on risk of diabetes among patients with schizophrenia: population based nested case-control study. Koro CE et al. BMJ. 2002;325(7358):243.
  4. Incidence of newly diagnosed diabetes attributable to atypical antipsychotic medications. Leslie DL et al. Am J Psychiatry. 2004;161(9):1709-11.
  5. Clozapine, diabetes mellitus, weight gain, and lipid abnormalities: A five-year naturalistic study. Henderson DC et al. Am J Psychiatry. 2000;157(6):975-81.
  6. Pharmacology of antipsychotics in the elderly: a focus on atypicals. Finkel S. J Am Geriatr Soc 2004; 52(12):S258–265
  7. A Ser311Cys mutation in the human dopamine receptor D2 gene is associated with reduced energy expenditure. Tataranni PA et al. Diabetes. 2001;50(4):901-4.
  8. Relation between food reinforcement and dopamine genotypes and its effect on food intake in smokers. Epstein LH et al. Am J Clin Nutr. 2004;80(1):82-8.
  9. Association of dopamine D2 receptor polymorphisms Ser311Cys and TaqIA with obesity or type 2 diabetes mellitus in Pima Indians. Jenkinson CP et al. Int J Obes Relat Metab Disord. 2000;24(10):1233-8
  10. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Hanson RL et al. Am J Hum Genet. 1998;63(4):1130-8.
  11. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Noble EP et al. Arch Gen Psychiatry. 1991;48(7):648-54.
  12. Genetic variants of the human obesity (OB) gene: association with body mass index in young women, psychiatric symptoms, and interaction with the dopamine D2 receptor (DRD2) gene. Comings DE et al. Mol Psychiatry. 1996;1(4):325-35.
  13. Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report. Blum K et al. Pharmacogenetics. 1996;6(4):297-305.
  14. Variant alleles of the D2 dopamine receptor gene and obesity. Spitz MR et al. Nutrition Research. 2000;20(3):371-380.
  15. Modulation of blood pressure and obesity with the dopamine D2 receptor gene TaqI polymorphism. Thomas GN et al. Hypertension. 2000;36(2):177-82.


Elevated Sympathetic Tone is Associated with Metabolic Syndrome and Insulin Resistance in Humans

  1. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Anderson EA ,et al. Hypertension. 1992;19(6 Pt 2):621-7.
  2. The sympathetic nervous system in hypertension and renal disease. Saruta T, Kumagai H. Curr Opin Nephrol Hypertens. 1996;5(1):72-9.
  3. Role of sympathetic nervous system in hypertension and effects of cardiovascular drugs. Noll G, et al. Eur Heart J. 1998;19(Suppl F):F32-8.
  4. Basal sympathetic nerve activity is enhanced with augmentation of baroreceptor reflex in Wistar fatty rats: a model of obesity-induced NIDDM. Suzuki H, et al. J Hypertens. 1999;17(7):959-64.
  5. Role of sympathetic nervous system and neuropeptides in obesity hypertension. Hall JE, et al. Braz J Med Biol Res. 2000;33(6):605-18.
  6. Insulin resistance and the sympathetic nervous system. Egan BM. Curr Hypertens Rep. 2003;5(3):247-54.
  7. Elevated sympathetic nerve activity: the link between low birth size and adult-onset metabolic syndrome? Hausberg M, et al. J Hypertens. 2004;22(6):1087-9.
  8. High serum high-sensitivity C-reactive protein concentrations are associated with relative cardiac sympathetic overactivity during the early morning period in type 2 diabetic patients with metabolic syndrome. Aso Y, et al. Metabolism. 2006;55(8):1014-21.
  9. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Grassi G. Hypertens Res. 2006;29(11):839-47.
  10. Insulin resistance and sympathetic overactivity in women. Kaaja RJ, Pöyhönen-Alho MK. J Hypertens. 2006;24(1):131-41.
  11. Sympathetic system activity in obesity and metabolic syndrome. Tentolouris N, et al. Ann N Y Acad Sci. 2006;1083:129-52.
  12. Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Grassi G, et al. Nutr Metab Cardiovasc Dis. 2007;17(6):473-81.
  13. The sympathetic nervous system and the metabolic syndrome. Mancia G, et al. J Hypertens. 2007;25(5):909-20.
  14. Mediators of sympathetic activation in metabolic syndrome obesity. Straznicky NE, et al. Curr Hypertens Rep. 2008;10(6):440-7.
  15. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Flaa A, et al. Metabolism. 2008;57(10):1422-7.
  16. The role of norepinephrine and insulin resistance in an early stage of hypertension. Penesova A, et al. Ann N Y Acad Sci. 2008;1148:490-4.
  17. Association between the sympathetic firing pattern and anxiety level in patients with the metabolic syndrome and elevated blood pressure. Lambert E, et al. J Hypertens. 2010;28(3):543-50.
  18. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Lambert GW, et al. Pharmacol Ther. 2010;126(2):159-72.
  19. Cardiovascular and renal complications of type 2 diabetes in obesity: role of sympathetic nerve activity and insulin resistance. Masuo K, et al. Curr Diabetes Rev. 2010 Mar;6(2):58-67.
  20. Stress and its role in sympathetic nervous system activation in hypertension and the metabolic syndrome. Lambert EA, Curr Hypertens Rep. 2011;13(3):244-8.
  21. Increased visceral adipose tissue is associated with increased resting heart rate in patients with manifest vascular disease. Bemelmans RH et al. Obesity (Silver Spring). 2012;20(4):834-41.
  22. Risk of elevated resting heart rate on the development of type 2 diabetes in patients with clinically manifest vascular diseases. Bemelmans RH, et al. Eur J Endocrinol. 2012;166(4):717-25.
  23. Leptin increasing sympathetic nerve outflow in obesity: A cure for obesity or a potential contributor to metabolic syndrome? Simonds SE, et al. J. Adipocyte. 2012;1(3):177-181.
  24. Obesity and adipokines: effects on sympathetic overactivity. Smith MM, Minson CT. J Physiol. 2012;590(8):1787-801.
  25. The risk of resting heart rate on vascular events and mortality in vascular patients. Bemelmans RH, et al. Int J Cardiol. 2013;168(2):1410-5.
  26. Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Canale MP, et al. Int J Endocrinol. 2013;2013:865965.
  27. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. Thorp AA, Schlaich MP. J Diabetes Res. 2015;2015:341583.

Dopamine – Clock Interactions in the Regulation of Peripheral Metabolism

 

  1. Grassi, G., et al., Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia, 2005. 48(7): p. 1359-65.
  2. Beske, S.D., et al., Reduced cardiovagal baroreflex gain in visceral obesity: implications for the metabolic syndrome. Am J Physiol Heart Circ Physiol, 2002. 282(2): p. H630-5.
  3. Straznicky, N.E., et al., Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab, 2005. 90(11): p. 5998-6005.
  4. Esler, M., et al., Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens, 2001. 14(11 Pt 2): p. 304S-309S.
  5. Masuo, K., et al., Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens, 1997. 10(1): p. 77-83.
  6. Flaa, A., et al., Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolism, 2008. 57(10): p. 1422-7.
  7. Carnethon, M.R., et al., Prospective investigation of autonomic nervous system function and the development of type 2 diabetes: the Atherosclerosis Risk In Communities study, 1987-1998. Circulation, 2003. 107(17): p. 2190-5.
  8. Carnethon, M.R., et al., Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care, 2003. 26(11): p. 3035-41.
  9. Fiorentini, A., et al., Circadian rhythm of autonomic activity in non diabetic offsprings of type 2 diabetic patients. Cardiovasc Diabetol, 2005. 4: p. 15.
  10. Frontoni, S., et al., Early autonomic dysfunction in glucose-tolerant but insulin-resistant offspring of type 2 diabetic patients. Hypertension, 2003. 41(6): p. 1223-7.
  11. Egan, B.M., Insulin resistance and the sympathetic nervous system. Curr Hypertens Rep, 2003. 5(3): p. 247-54.
  12. Wulsin, L.R., et al., Autonomic Imbalance as a Predictor of Metabolic Risks, Cardiovascular Disease, Diabetes, and Mortality. J Clin Endocrinol Metab, 2015. 100(6): p. 2443-8.
  13. Mancia, G., et al., The sympathetic nervous system and the metabolic syndrome. J Hypertens, 2007. 25(5): p. 909-20.
  14. Canale, M.P., et al., Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol, 2013. 2013: p. 865965.
  15. Zhao, Z., et al., A Central Catecholaminergic Circuit Controls Blood Glucose Levels during Stress. Neuron, 2017. 95(1): p. 138-152 e5.
  16. Scheer, F.A., et al., Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A, 2009. 106(11): p. 4453-8.
  17. Knutson, K.L., et al., Association between sleep and blood pressure in midlife: the CARDIA sleep study. Arch Intern Med, 2009. 169(11): p. 1055-61.
  18. Suka, M., K. Yoshida, and H. Sugimori, Persistent insomnia is a predictor of hypertension in Japanese male workers. J Occup Health, 2003. 45(6): p. 344-50.
  19. Narang, I., et al., Sleep disturbance and cardiovascular risk in adolescents. CMAJ, 2012. 184(17): p. E913-20.
  20. Meisinger, C., et al., Sleep duration and sleep complaints and risk of myocardial infarction in middle-aged men and women from the general population: the MONICA/KORA Augsburg cohort study. Sleep, 2007. 30(9): p. 1121-7.
  21. Narkiewicz, K. and V.K. Somers, Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand, 2003. 177(3): p. 385-90.
  22. Florian, J.P. and J.A. Pawelczyk, Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin Sci (Lond), 2009. 118(1): p. 61-9.
  23. Luo, S., et al., Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol, 2018. 30(1).
  24. Volkow, N.D., et al., Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain. J Neurosci, 2012. 32(19): p. 6711-7.
  25. Dunn, J.P., et al., Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care, 2012. 35(5): p. 1105-11.
  26. Volkow, N.D., et al., Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage, 2008. 42(4): p. 1537-43.
  27. Wang, G.J., et al., Brain dopamine and obesity. Lancet, 2001. 357(9253): p. 354-7.
  28. Zhong, P., et al., HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. Elife, 2018. 7.
  29. Geiger, B.M., et al., Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience, 2009. 159(4): p. 1193-9.
  30. Davis, J.F., et al., Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci, 2008. 122(6): p. 1257-63.
  31. Rada, P., et al., Reduced accumbens dopamine in Sprague-Dawley rats prone to overeating a fat-rich diet. Physiol Behav, 2010. 101(3): p. 394-400.
  32. Geiger, B.M., et al., Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J, 2008. 22(8): p. 2740-6.
  33. Hryhorczuk, C., et al., Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology, 2016. 41(3): p. 811-21.
  34. van de Giessen, E., et al., High fat/carbohydrate ratio but not total energy intake induces lower striatal dopamine D2/3 receptor availability in diet-induced obesity. Int J Obes (Lond), 2013. 37(5): p. 754-7.
  35. York, D.A., L. Teng, and M. Park-York, Effects of dietary fat and enterostatin on dopamine and 5-hydroxytrytamine release from rat striatal slices. Brain Res, 2010. 1349: p. 48-55.
  36. Cincotta, A.H., et al., Chronic infusion of norepinephrine into the VMH of normal rats induces the obese glucose-intolerant state. Am J Physiol Regul Integr Comp Physiol, 2000. 278(2): p. R435-44.
  37. Luo, S., J. Luo, and A.H. Cincotta, Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology, 1999. 70(6): p. 460-5.
  38. Liang, Y., S. Luo, and A.H. Cincotta, Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism, 1999. 48(10): p. 1287-9.
  39. Bina, K.G. and A.H. Cincotta, Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology, 2000. 71(1): p. 68-78.
  40. Ezrokhi, M., et al., Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats. Diabetol Metab Syndr, 2014. 6: p. 104.
  41. Luo, S., et al., Elevation of Norepinephrine (NE) Activity at the Vetromedial Hypothalamus (VMH) of normal rats induces the obese hypertensive insulin resistant state without altering feeding. Diabetes, 2015. 64(Suppl1)(A540).
  42. Raskin, A. and A.H. Cincotta, Bromocriptine-QR therapy for the management of type 2 diabetes mellitus: developmental basis and therapeutic profile summary. Expert Review of Endocrinology & Metabolism, 2016. 11(2): p. 113-148.
  43. Shimazu, T., Central nervous system regulation of liver and adipose tissue metabolism. Diabetologia, 1981. 20(Suppl 1): p. 343-356.
  44. Moore, M.C., et al., Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr, 2012. 3(3): p. 286-94.
  45. Dicostanzo, C.A., et al., Role of the hepatic sympathetic nerves in the regulation of net hepatic glucose uptake and the mediation of the portal glucose signal. Am J Physiol Endocrinol Metab, 2006. 290(1): p. E9-E16.
  46. Shimazu, T., Neuronal regulation of hepatic glucose metabolism in mammals. Diabetes Metab Rev, 1987. 3(1): p. 185-206.
  47. van den Hoek, A.M., et al., Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes, 2008. 57(9): p. 2304-10.
  48. Shimazu, T., Reciprocal innervation of the liver: its significance in metabolic control. Adv Metab Disord, 1983. 10: p. 355-84.
  49. Deibert, D.C. and R.A. DeFronzo, Epinephrine-induced insulin resistance in man. J Clin Invest, 1980. 65(3): p. 717-21.
  50. Lembo, G., et al., Acute noradrenergic activation induces insulin resistance in human skeletal muscle. Am J Physiol, 1994. 266(2 Pt 1): p. E242-7.
  51. Jamerson, K.A., et al., Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension, 1993. 21(5): p. 618-23.
  52. Rojas, J.M., et al., Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation. Mol Metab, 2015. 4(3): p. 210-21.
  53. Bruinstroop, E., et al., Hypothalamic neuropeptide Y (NPY) controls hepatic VLDL-triglyceride secretion in rats via the sympathetic nervous system. Diabetes, 2012. 61(5): p. 1043-50.
  54. Geerling, J.J., et al., Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies. J Lipid Res, 2014. 55(2): p. 180-9.
  55. Steffens, A.B., et al., Hypothalamic food intake regulating areas are involved in the homeostasis of blood glucose and plasma FFA levels. Physiol Behav, 1988. 44(4-5): p. 581-9.
  56. Bonnet, F., et al., Elevated heart rate predicts beta cell function in non-diabetic individuals: the RISC cohort. Eur J Endocrinol, 2015. 173(3): p. 409-15.
  57. Defronzo, R.A., Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009. 58(4): p. 773-95.
  58. Bajaj, M., et al., Free fatty acids reduce splanchnic and peripheral glucose uptake in patients with type 2 diabetes. Diabetes, 2002. 51(10): p. 3043-8.
  59. Daniele, G., et al., Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes, 2014. 63(8): p. 2812-20.
  60. Belfort, R., et al., Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes, 2005. 54(6): p. 1640-8.
  61. Zhang, L., et al., Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta, 2010. 1801(1): p. 1-22.
  62. Tumova, J., M. Andel, and J. Trnka, Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol Res, 2016. 65(2): p. 193-207.
  63. Gadegbeku, C.A., et al., Raising lipids acutely reduces baroreflex sensitivity. Am J Hypertens, 2002. 15(6): p. 479-85.
  64. Galletti, F., et al., High-circulating leptin levels are associated with greater risk of hypertension in men independently of body mass and insulin resistance: results of an eight-year follow-up study. J Clin Endocrinol Metab, 2008. 93(10): p. 3922-6.
  65. Eikelis, N., et al., Interactions between leptin and the human sympathetic nervous system. Hypertension, 2003. 41(5): p. 1072-9.
  66. Marsh, A.J., et al., Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension, 2003. 42(4): p. 488-93.
  67. Ciriello, J., Leptin in nucleus of the solitary tract alters the cardiovascular responses to aortic baroreceptor activation. Peptides, 2013. 44: p. 1-7.
  68. Li, B., et al., Leptin acts in the forebrain to differentially influence baroreflex control of lumbar, renal, and splanchnic sympathetic nerve activity and heart rate. Hypertension, 2013. 61(4): p. 812-9.
  69. da Silva, A.A., J.M. do Carmo, and J.E. Hall, Role of leptin and central nervous system melanocortins in obesity hypertension. Curr Opin Nephrol Hypertens, 2013. 22(2): p. 135-40.
  70. Kleinridders, A., et al., Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci U S A, 2015. 112(11): p. 3463-8.
  71. Morris, J.K., et al., Insulin resistance impairs nigrostriatal dopamine function. Exp Neurol, 2011. 231(1): p. 171-80.
  72. Stouffer, M.A., et al., Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun, 2015. 6: p. 8543.
  73. Heni, M., et al., Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes, 2017. 66(7): p. 1797-1806.
  74. Tack, C.J., et al., Effects of insulin on vascular tone and sympathetic nervous system in NIDDM. Diabetes, 1996. 45(1): p. 15-22.
  75. Rowe, J.W., et al., Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes, 1981. 30(3): p. 219-25.
  76. Lambert, G.W., et al., Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol Ther, 2010. 126(2): p. 159-72.
  77. Moreira, M.C., et al., Does the sympathetic nervous system contribute to the pathophysiology of metabolic syndrome? Front Physiol, 2015. 6: p. 234.
  78. Tentolouris, N., G. Argyrakopoulou, and N. Katsilambros, Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Med, 2008. 10(3): p. 169-78.
  79. Cabandugama, P.K., M.J. Gardner, and J.R. Sowers, The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med Clin North Am, 2017. 101(1): p. 129-137.
  80. Grassi, G., G. Seravalle, and G. Mancia, Sympathetic activation in cardiovascular disease: evidence, clinical impact and therapeutic implications. Eur J Clin Invest, 2015. 45(12): p. 1367-75.
  81. Yasunari, K., et al., Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension. Am J Hypertens, 2006. 19(6): p. 573-8.
  82. Graham, L.N., et al., Sympathetic drive in anterior and inferior uncomplicated acute myocardial infarction. Circulation, 2004. 109(19): p. 2285-9.
  83. Leimbach, W.N., Jr., et al., Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation, 1986. 73(5): p. 913-9.
  84. Grassi, G., et al., Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension, 1998. 31(1): p. 68-72.
  85. Converse, R.L., Jr., et al., Sympathetic overactivity in patients with chronic renal failure. N Engl J Med, 1992. 327(27): p. 1912-8.
  86. Fisher, J.P., C.N. Young, and P.J. Fadel, Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci, 2009. 148(1-2): p. 5-15.
  87. Mangoni, A.A., et al., Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension, 1997. 30(5): p. 1085-8.
  88. Hijmering, M.L., et al., Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol, 2002. 39(4): p. 683-8.
  89. DiBona, G.F., Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens, 2002. 11(2): p. 197-200.
  90. Hu, A., et al., Chronic beta-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress. J Pharmacol Exp Ther, 2006. 318(2): p. 469-75.


Schematic of Dopamine – Clock Interactions in the Regulation of Peripheral Metabolism as reviewed in Raskin P, Cincotta AH. Bromocriptine-QR therapy for the management of type 2 diabetes mellitus: developmental basis and therapeutic profile summary. Expert Review of Endocrinology & Metabolism 2016;11(2):113-48.

 

  1. Bina KG, Cincotta AH. Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology. 2000; 71(1):68-78.
  2. Boundy VA, Cincotta AH. Hypothalamic adrenergic receptor changes in the metabolic syndrome of genetically obese (ob/ob) mice. Am J Physiol Regul Integr Comp Physiol. 2000; 279(2):R505-14.
  3. Cincotta AH, Luo S, Liang Y. Hyperinsulinemia increases norepinephrine metabolism in the ventromedial hypothalamus of rats. Neuroreport. 2000; 11(2):383-7.
  4. Cincotta AH, Luo S, Zhang Y, Liang Y, Bina KG, Jetton TL, Scislowski PW. Chronic infusion of norepinephrine into the VMH of normal rats induces the obese glucose-intolerant state. Am J Physiol Regul Integr Comp Physiol. 2000; 278(2):R435-44.
  5. Cincotta AH, MacEachern TA, Meier AH. Bromocriptine redirects metabolism and prevents seasonal onset of obese hyperinsulinemic state in Syrian hamsters. Am J Physiol. 1993; 264(2 Pt 1):E285-93.
  6. Cincotta AH, Meier AH. Prolactin permits the expression of a circadian variation in lipogenic responsiveness to insulin in hepatocytes of the golden hamster (Mesocricetus auratus). J Endocrinol. 1985; 106(2):173-6.
  7. Cincotta AH, Meier AH. Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus). Metabolism. 1995; 44(10):1349-55.
  8. Cincotta AH, Schiller BC, Meier AH. Bromocriptine inhibits the seasonally occurring obesity, hyperinsulinemia,insulin resistance, and impaired glucose tolerance in the Syrian hamster,Mesocricetus auratus. Metabolism. 1991; 40(6):639-44.
  9. Davis LM, Pei Z, Trush MA, Cheskin LJ, Contoreggi C, McCullough K, Watkins PA, Moran TH. Bromocriptine reduces steatosis in obese rodent models. J Hepatol. 2006; 45(3):439-44.
  10. Dicostanzo CA, Dardevet DP, Neal DW, Lautz M, Allen E, Snead W, Cherrington AD. Role of the hepatic sympathetic nerves in the regulation of net hepatic glucose uptake and the mediation of the portal glucose signal. Am J Physiol Endocrinol Metab. 2006; 290(1):E9-E16.
  11. Ezrokhi M, Luo S, Trubitsyna Y, Cincotta AH. Weighted Effects of Bromocriptine Treatment on Glucose Homeostasis during Hyperglycemic versus Euglycemic Clamp Conditions in Insulin Resistant Hamsters: Bromocriptine as a Unique Postprandial Insulin Sensitizer. J Diabetes Metab. 2012; S2:007.
  12. Ezrokhi M, Trubitsyna Y, Luo S, Cincotta AH. Timed Dopamine Agonist Treatment Ameliorates Both Vascular Nitrosative/Oxidative Stress Pathology and Aortic Stiffness in Arteriosclerotic, Hypertensive SHR Rats. Diabetes. 2010; 59(suppl 1):A67
  13. Jetton TL, Liang Y, Cincotta AH. Systemic treatment with sympatholytic dopamine agonists improves aberrant beta-cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels
    in ob/ob mice. Metabolism. 2001; 50(11):1377-84.
  14. Kraszewski KZ, Cincotta AH. Increased responsiveness of ventromedial hypothalamic neurons to norepinephrine in obese versus lean mice: relation to the metabolic syndrome. Int J Mol Med. 2000; 5(4):349-55.
  15. Lambert GW, Straznicky NE, Lambert EA, Dixon JB, Schlaich MP. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol Ther. 2010; 126(2):159-72.
  16. Liang Y, Cincotta AH. Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes Relat Metab Disord. 2001; 25(5):698-704.
  17. Liang Y, Jetton TL, Lubkin M, Meier AH, Cincotta AH. Bromocriptine/SKF38393 ameliorates islet dysfunction in the diabetic (db/db) mouse. Cell Mol Life Sci. 1998; 54(7):703-11.
  18. Liang Y, Lubkin M, Sheng H, Scislowski PW, Cincotta AH. Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochim Biophys Acta. 1998; 1405(1-3):1-13.
  19. Liang Y, Luo S, Cincotta AH. Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism. 1999; 48(10):1287-9.
  20. Luo S, Ezrokhi M, Cincotta AH. Timed Daily Bromocriptine Administration Ameliorates Metabolic Syndrome and Normalizes Elevated Ventromedial Hypothalamic Catecholamines of Spontaneously Hypertensive Rats. Diabetes. 2008; 57(suppl 1):A627
  21. Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH. Intrahypothalamic circuitry regulating hypothalamic fuel sensing to induce insulin sensitivity or insulin resistance. Diabetologia. 2008; 51:[Suppl1] S59.
  22. Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH. Elevation of Serotonin Activity within the Ventromedial Hypothalamus (VMH) Induces the Hypertensive Insulin Resistant State in Rats Diabetes. 2011; 60(suppl 1):A128.
  23. Luo S, Liang Y, Cincotta AH. Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology. 1999; 69(3):160-6.
  24. Luo S, Luo J, Cincotta AH. Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology. 1999; 70(6):460-5.
  25. Luo S, Luo J, Cincotta AH. Suprachiasmatic nuclei monoamine metabolism of glucose tolerant versus intolerant hamsters. Neuroreport. 1999; 10(10):2073-7.
  26. Luo S, Luo J, Meier AH, Cincotta AH. Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997; 8(16):3495-9
  27. Luo S, Meier AH, Cincotta AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology. 1998; 68(1):1-10.
  28. Zhang Y, Luo S, Ezrokhi M, Trubitsyna Y, Cincotta AH. Identification of a novel hypothalamic circuit regulating energy balance: dopaminergic projection from Supramammillary Nucleus (SuM) to Suprachiasmatic Nucleus (SCN) Diabetes. 2013; 62(suppl 1):A525.

Abbreviations:
1. CRH: Corticotropin Releasing Hormone
2. eNOS: Endothelial Nitric Oxide Synthase
3. FFA: Free Fatty Acids
4. NPY: Neuropeptide Y
5. PVN: Paraventricular Nucleus
6. SCN: Suprachiasmatic Nucleus
7. SNS: Sympathetic Nervous System
8. TG: Triglycerides
9. VMH: Ventromedial Hypothalamus



 

Clinical Studies
Doctor Info
White Papers

Secure Login